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In this paper we are concerned with linear (stochastic) systems
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¢ OF (more or less equi-
i&entifying A, By, By, C on the

basis of observations of the inputs ug and outputs y. In particular we are
interested in the problem of whether there exists a machine (a system) driven

by the instant neous observations (ug, y;) which as output produces a "best"
estimate of the unknown system (recursive estimation). And even more particularly

we are interested on how big (in state space dimension) such
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fil%ering problem. For such problems the socalled estimation

a good deal of information (on how hard
to exploit in this paper.
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INTRODUCT ION

Consider a continuous time linear state space
model (system)

dxy = Ax.dt + Blutdt + Bzdwt,

dy, = Cx, + Ddv., x; € RT

(1.1)

or a discrete time ARMAX model
|4 . m . q .
igo Aiy(t-L) = igl Diu(t—l) + iéo Biw(t—l)
(1.2)

or the discrete time analogue of (1.1) or the
continuous time analogue of (1.2) (do not
confuse the A, B's and D's in (l.!) with those
in (1.2); they refer to rather different
things). In this paper we are concerned with
the problem of identifying optimally the va-
rious matrices in (1.1) (resp. 1.2) given
observations of the deterministic inputs u,
and the outputs y,. More precisely we are
interested in finding a machine which does
this in a recursive way (i.e. on line). Such
a machine should proceed as follows: at time
t-1 there is available a model M(t-1) and per-
haps an additional memory vector R(t-1) and
on the basis of the state (M(t-1),R(t-1)) and
the new data u(t), y(t) the new "best" model
M(t) and new memory vector R(t) can be cal-
culated by some formula ¥. There are a number
of rather obvious desiderata: e.g. ¥ must not
depend on time and R(t) must (in dimension)
remain bounded in time. In other words the
identification machine we are looking for (in
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a machine must be.

r g and equations
into a nonlinear
Lie algebra contains
this is what we try

the original problem

the problem is), and

Identification, ARMA Models, Estimation Lie algebra, Nonlinear filtering,

filter.
the discrete time case) is itself a system
(most probably nonlinear) of the form

g(t)

M(t)

n

“P(E(t_l), u(t): Y(t))9
YE)), E(t) € RY

(1.3)

and a continuous time identification machine
could look like

dgt = a(gt)dt + B](Et’ ut)dt + Bz(zt)d}'t ’

_ N
M(t) - Y(Et)’ E.-(t) € 5 (]'4)
One particular question we would like to raise
in this context is: "how big must N be'; i.e.
we are interested in the minimal realization
theory of the map

sequences or functions}+{best linear model
of input/output data of given dimensio

Of course the minimal model for this input/
output map may involve more general space
(manifolds) than the BN.

One of the first issues is then "identi-
fiability": can one distinguish between all
models of type (1.1) (resp. (1.2)) on the
basis of input/output data alone. In the case
of the models (1.1) this is obviously not the
case: there are superfluous parameters to be
removed. The next question is finite identifi-
ability; how many data do we need to distin-
guish the various candidate models. This also
provides a lower bound for N(provided we do
not allow pathological (continuous) maps like
the Peano curve (from the unit interval onto
the unit square); it suffices to require ¥ and



Y in (1.3) to be algebraic or differentiable
to avoid this). This is the topic of section
2 below.

Section 3 then continues with some re=
marks and some precise (but open) suggestions
concerning the possible structure of an iden—
tification machine (1.3) or (1.4).

In section 4 below we discuss the non-
linear filtering approach to identificationm.
This amounts to considering the entries of
A, By, B,, C, Din (1.1) as additional state
variables and adding the equations

dA = dBy = dB, = dC = dD = 0

(1.5)
(where if E is a matrix of variables dE = 0
stands for de;. = 0 for all the entries e::).

i
Adding (1.5) td (1.1) gives us a (rather

large) nonlinear filtering problem, namely
that of finding the best estimate of the
state vector (x,4,B;,B5,C,D) given the ob-
servations (y_,ug), 0 < s < t. To every non-
linear filtering problem there is associated
a certain Lie-algebra called the estimation
Lie algebra and there is a philosophy (an
almost theorem), due to [Brockett—Clark, 1978]
to the effect that homomorphisms of Lie alge-
bras from the estimation Lie algebra to Lie
algebras of vectorfields correspond to exact
filters for certain statistics of the system;
cf. also [Hazewinkel-Marcus,1980], [Marcus—
Mitter-Ocone,1978] and quite a few papers in
[Hazewinkel-Willems,1981] for more information
on this. In our particular case of a filter-
ing problem coming from an identification
problem the estimation Lie algebra turns out
to be pro-finite dimemnsional (cf. [Hazewinkel-
Marcus, 1980] for this notion and what it im~
plies) which suggests that there will be
"sufficiently many" statistics which can be
computed recursively.

A priori the use of the identification
Lie algebra seems restricted to finding out
things about the existence or nonexistence of
exact filters. This is probably not the case
and the last two sectioms of this paper
(section 5 on Gaussian approximation; section
6 on the Extended Kalman Filter) provide po-
sitive evidence that it also contains infor-
mation (when considered not as a bare Lie
algebra but as a Lie algebra with a given re-
presentation) on approximate filters.

2, FINITE IDENTIFIABILITY OF ARMA
MODEL S

2.1. The set—up. The class of models
we are interested in this section is the class
of models (1.2) with zero inputs; i.e. we are
interested in all models

P q
IooAgy(t-i) = (L Byw(t-i) ,
1=0 1=0 (2. l)
where y(t) € C®, t € Z (outputs) and the

u(t) € C® are random vectors, independently
and identically distributed with mean zero

and covariance I (positive definite hermitian).
The integers p,q are supposed given and in
additive we assume that A, is nomsingular and
the causality (stability) conditiom
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det kE Akzk *# 0 for all z € C of norm < |
=0 h =

(2.2)

We are interested in the identifiability
of this class of models, i.e. in the questiop
of whether two different models of type (2.1)
give different probability distributions on
the to-be-observed outputs and given a identi-
fiable subclass we are interested in finite
identifiability which roughly means that we
want to be able to decide this on the basis
of the probability properties of a finite
collection of outputs and how many are needed,
In particular we want to know how many of the
cross covariances (which by stationarity are
independed of t)

T (2.3)

*
k= B Ve
must be known in order to determine all others.

Let A(z) =X zk, B(z) = £ B.z) be the
generating functions of the sequenaes of ma-
trices (A5, -.., ), (Bo, e Bq). Form the
(backwards) transfer functiom and expand it
as a power series

k-1
K?
and in terms of the T's we are interested in
how many of them we need to know (in terms of
p and q) so that all others are determined.

The rank of the associated block Hankel
matrix H of T(z) is of course finite and equal
to the MacMillan degree n of the ARMA model
(2.1).

T(2) = A(z)"'B(2) = 1:501 T 2.4)

2.5. Finite identifiability. Let
r = max(p,q). Then the observability Kronecker
indices of the system (F,G,H) are < r. There
is even, as is wellknown, a representation of
the ARMA model for which the row degrees of
the partitioned matrix [A(z):B(z)] are equal
to the observability Kromecker indices.

This gives n < mr. Similar arguments for
suitability shifted and adjusted transfer
functions (forwards and backwards) combined
with a well-known result from partial realiz-
ation theory due to Kalman (cf. e.g. [Hazewin-
kel,1980]), now lead to the theorem that

Tos =ees T, +pm suffice to determine all further
T's. If q 3 p this can be sharpened to Ty, ...,
Tp+qme °f- [Hanzon, 1981].

2.6. The associated Covariance Systems.

Let T be given by (2.3). These matrices
for k € N ~ {0} can be considered as inpulse
response matrices of some linear system which
we call the covariance system corresponding
to the ARMA model. Using rather similar ideas
as described above and using that the block
Toeplitz matrix

T ... T

q-p+l

*
LT

is positive definite hermitian omne obtains




ythat the Ty, «o., Toy e = min(pm+q, qm+p)
ﬁsufflce to determine the remaining ones so

v that (the statistics of) the first e + 1 out-
puts Yos Yi» ++e5 Ve suffice for identifiabil-
i For q > p > 1 this sufficient condition
can be proved to be necessary as well, cf.
[Hanzon,l98l]

3. IDENTIFICATION AND THE GEOMETRY OF

THE MODULI SPACE

3.1. The set~up. Let us consider the
usual state space linear systems

= Ax + Bu, v = Cx, x € gn, y € §P, u € 5@

(3.2)

and consider at a fairly primitive level the
problem of recursive "fitting" A, B, C in the
"hest" possible way to the available data
u(t), y(t), t € R. In particular for the
moment we are not going to worry about how to
put in some stochastics so as to make sense

of "best™ in a probabilistic way. Here recur-
sive should be interpreted as in the intro-
duction. We shall also assume that (3.2) is
completely observable and completely reach-
able and that we have available a (reasonable)
guess for n. The first remark is of course
that y(t), u(t) for all t cannot determine

(A, B, C) uniquely but only the orbit of

(A, B, C) under state sgace equivalence,
(4,B,C)5 = as™1,s8,¢57!), S € GL (R). This
leads to the quotient space T

L8e»cr /GL_ = MCO 2CT 4f the space of all cr
m,n,p n,p

and co systems of the indicated dimensions
modulo state space equivalence. (And of course
y(t), u(t) does distinguish between points of
MCO» CT
o,0,p
ferentiable manifold which, perhaps unfortun~
ately, is as a rule not diffeomorphic to an
RY,[" Hazewinkel, 1977 ] .

Viewing identification as "walking around
on M" makes the problem identifiable, i.e. it
gets rid of the superfluous parameters. And
it does so in a way which is much less ad hoc
then the use of one or another canonical
form . Even when global continuous canonical
forms do exist (which happens only when m = 1
or p = | [Hazewinkel,1977]) there are lots of
them; and they are not equivalent e.g. in
terms of the size of the gradient vectors of
error functions and there is no especially
favorable ome.

So it seems much more natural to try to
use the natural geometry of M and to do
identification directly on M.

==0

.) This space M is a nice smooth dif-

3.3. A Riemannian metric on M. A first
thing one needs for Chis is a Riemannian
metric on M. A nice one is obtained as fol-
lows, Given a system (A,B,C) write, as usual

R(A,B) = (B;AB;...3;A"B),
T

(3.4)

Qea,0)T = (cT;a%ct;. .. Tt

(where the T denotes transposes). We shall
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use dR(A,B) to denote the formal differential

of R(A,B), e.g. if n = 2 one has dR(A,B) = dB;
(dA)B + A(dB); (dA)AB + A(dA)B + AZ(dB), where
(dA,dB,dC) is a tangent vector to

19T ¢ (A,B,C). Using this notation con~
m,n,p
sider the following Riemannian metric on
1.80scT
m, 1, p
|1(da,dB,d0) || =

(3.5)
Tr ((4Q)RRY (4Q)T)+Tr ((dar)TQTQ(dR))

where Q is short for Q(A,C) and R for R(A,B).
It is not difficult to check that this Rie-
mannian metric is positive definite on
Lco,cer
m,n,p
ary of L p? i.e. it becomes singular for
systems of Iower MacMillan degree.

One easily checks that this metric is
invariant under GL,so that the metric des-
cends to give us a Riemannian metric on M.

One interesting problem is to calculate
the curvature of this metric also because of
the comnection between Gaussian curvature and
"the Fisher second order efficiency'" of a
statistical estimation problem ([Efron,1975]).

but that it degenerates on the bound-
co,cr

3.6. Identifying systems. One could now
imagine that an identification procedure
would proceed as follows. At time t we have
I, and x.. New data come in; assuming I, X
evolves in a known way; this gives (given
u(t)) a prediction for y(t) which can be com-
pared to the actual y(t). Calculate the
squared error (e.g.) function as a function
of T € M and take the gradient. Now let It
evolve along this gradient (possibly with a
gain factor inserted). The question we would
like to pose is does such an identification
scheme exist and/or can any of the existing
recursive identification schemes (cf. [Ljung,
1981] for a very nice, up to date survey) be
viewed in this way (perhaps in approximation)?
Or more generally can there exist such a
scheme possibly evolving on a manifold
M' > M covering M? One would definitely con-
jecture yes. Given the fact that there are
recursive identification schemes it is hard
to see how they can avoid covering the moduli
space M in some way.

4. THE NONLIﬁfAR FILTERING APPROACH
TO IDENTIFICATION

4.1. The Estimation Lie algebra. Con-
sider a general nonlinear stochastic system

dx

£ = f(xt)dt + G(xt)dwt s
(4.3)

L}

dye h(xt)dt + dvy

where w,, v, are independent Wiener noise pro-—
cesses also independent of the initial random
variable x,. Here £,h,G are vector and matrix
valued functions of the appropriate sizes.
Assume sufficient regularity so that the con-
ditional density p(x,t) exists of the state

X¢ given the past observations yg, 0 £ s S t.



Then an unnormalized version p(x,t) satisfies
the socalled Duncan-Mortenson-Zakai equation
(Fisk—Stratonovic form)

P
dp(x,t) = Lop(x,t)dt + I b, (x)p(x,t)dyj¢
(4.3)

where h; is the i-th compoment of h and L,
is the éifferential operator
1 B 32

= 1 i Ty.. -
Lo = 2 i,§=18xiaxj ((ce )159)
n 3 1R L2 -4
T ik g B9 T g

The Lie algebra of differential operators
generated by L, and hy, ..., hy is called

the estimation Lie algebra. Cf. the references
cited in the introduction for more information
on it.

4,5, The Estimation Algebra of an

Identification Problem. Now con-
sider the problem of identifying a system
(.1) where, for ease of notation mainly, we
take D = » By = O (so that there are no
deterministic inputs). Write it as a non-
linear filtering problem by adding the equat-
ions (1.5). This gives

dx, = Ax dt+Bdw. , (4.6)

dA = dB = dC = 0 , dy, = Cx,+dv,

Note that there is redundancy in A,B,C).
Writing out L, and hi in this case one notices
that these operators are all sums of express—
ions of the form Cqu“(aB/axﬁ) where C,p is

a polynomial in the entries of A,B,C and
where o = (Qy,...,0,), B = (8],...,Bn) are
multiindices such that |la||, ||8]|] < 2 where

if v is a multiindex l v|| denotes

Yi+...+Yn. Now the x*(88/0xP) witn [le]]

[18]] < 2 form a 2n? + 3n + 1 dimensional Lie
algebra (under the commutator brackett) which
we denote LS,. It follows that the estimation
Lie algebra of (4.6) is a sub-Lie-algebra of
the Lie-algebra LS, ® R [A,B,C] where RI[A,B,C]
stands for the polynomial ring over R in the
entries of A,B,C. In particular this implies
that the estimation Lie algebra L(Z) of (4.6)
is profinite dimensional. This means that
there are ideals I; > I > I3 > ... such that
L(Z)/I: is finite dimensiona% for all j and
N I; ="{0}. And in turn this suggests that
there are sufficiently many recursively com-
putable statistics.

If M is a manifold let V(M) denote the
Lie algebra of vectorfields on M. For a fixed
6 = (A,B,C) the Kalman-Bucy filter defines an
anti~-homomorphism of Lie algebras of the
estimation Lie algebra L(8) to V(RY),
r-= in? + B/2)n (for a proof cf. [Brockett-
Clark,1978] in the simplest case and [Haze-
winkel,1981] in general). Letting 6 vary
these "combine" to define a Lie algebra homo-
morphism of the estimation Lie algebra of
(4.6) to V(grxgn), N=n2+nm+ np (the num-
ber of parameters in A,B,C). Or, better, one
can use a certain representation of LS, in
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V(RY) which is essentially all possible
Kalman filters combined, cf. [Hazewinkel,
1981].

This Lie algebra anti-homomorphism
(essentially a family of Kalman-Filters)
does calculate some statistic viz. the con-
ditional denmsity plx.|yg, 0 < s £ t,08] as a
function of 8. This and some related and/or
derived entities which can be recursively
computed can be used in a variety of ways,
cf. e.g. [Krishnaprasad-Marcus,1981],
[Krishnaprasad-Marcus-Hazewinkel, 1981]
[Krishnaprasad~Hazewinkel-Hanzon,1981] and
also below in section 5. But this filter does
not give us an identification procedure of
the type we want because it involves no
equations which tell us how 8 evolves.

5. GAUSSIAN APPROXIMATION

The filter described above does give
most useful information though, and combines
nicely with Gaussian approximation ideas
[Stratonovic, 1960,1970]. Let us illustrate
this by means of a most simple example

dxt=8xtdt+dwt, d6=0, dyt=dtdt+dvt
(5.1)

The D-M-Z equation in this case Looks
like
2
19 3
dp = (5 507 - 6 - 6x =
2 9x 9x (5.2)

- 12
7 X )pdt + dpdyt

and the estimation Lie algebra is easy to
calculate, cf. example 6.3 below. Write
p = e °. Then S satisfies the equation
2
_,19°8 _ 138 _ L9812
dS =(5 577 ~ 3G *+ 8 = Oxg_ + 5x7)dt
-xdy, (5.3)
which is a family of evolution equatioms for
S parametrized by 6. Moreover if for a cer-
tain value 6, of 6 the initial distribution
p(x5,8,) is Gaussian so that S(x,6,0) is
quadratic in x at O_, then p(x,6 ,t) is
Gaussian for all t ?because given B, we are
dealing with a linear system, i.e. 8(x,8,,t)
is quadratic. This can also be seen from
(5.3).
Assume p(%,,8,0) is Gaussian for all 6.
Write S = ax2+bx+c, where a,b,c are functions
of 6 and t. Then equation (5.3) gives us

a=-2a2+ % - 2ab ,

-2ab - b - dy, ,

b (5.4)

t=a+o-1 b

which is simply another way of writing down
(deriving) the family of Kalman filters allud-
ed to before in the last partlof section 4
above. In fact writing a = - = p~! the reader
will recognize in the first eQuation of (5.4)



vhe equation for the covariance p piven 8,

of course the Lie algab:a of the f;L:vr
(5.4) is a homomorphic image of the estimat-
jon Lie algebra. From the P&Vam@tgmg@d family
of covariance ﬂqua:10n; pom ) - pe qg? one
obtains {also families Ogg equations for the
(partxal} derivative(s = p (in this case
36 = ~2ppg * 2P * d8py) which is linear, given
pe This can be useful in view of a theorem
of Nishimura (cf. [Jazwinsky, 1970, page 254,
Thm 7.8]) to the effect that p(d,t) assumes
its minimum value at p(8 ,t) if 6, is the
true value.

The equations (5.3) also nicely show why
caussian approximation might work well. Write

3 4

2
S® oay + ax * ayxT Ay’ +ax’ v ..,

substituting this in (5.3) vields equations
for the a;, 1 = 0,1,2,..., viz,
» d;=3aj-2a,a,-%a ~dy, , d;=

177
3 *Q___ Y
agmagtuTIay

2 ool . .
—;a§—3a133~2a35+§+6a& » a3'—uaiaa-6aza3+10a§

. _ 92 )
-36a3 . aﬁ-—533—88234-531a5+1536—46a4 s ews

Taking the quadratic (Gaussian approximation)
is stable in the sense that if a, = g,
... = 0 at the starting time then the§ remiin
zero, but if e.g. a, = a; = = 0 at the
starting time then az, ag, etc. do not remain
zero. In fact Gau381an approximation is the
only approximation which works in this sense.

The filter (5.4) calculates a,b,c, as
functions of ©, but is of course still an
infinite~dimensional machine. Writing a,b,c
as power series in (6-9,) (arcund a previous
estimate 8 e.g.) we find from (5.4) differ-
ential equations for the ceoefficients ayy 24,
eee3 bgy By, o Cor Cjy .. of these power
series and because the estimation Lie algebra
is a subalgebra of the current algebra LS_ @&
R [8] we have that LS, @ (@-8,)*R (8] is an
{deal 80 that these equatlons are such that

% Cys k > i remain zero for all time t if
t%ls is the case at time t = (. This holds
for all i, in particular for i = 3., Thus we
can calculate the quadratic part (around 8 )
of S by an exact finite dimensional filter,
and this quadratic part in turn contains all
the data needed for the joint Gaussian approx-
imation of the density p(u,8) (up to a scalar

factor) and from that an (approximate) estimate
g results.

=g e

s ®

6. EXTENDED KALMAN FILTER AND
ESTIMATION LIE ALGEBRA

In this section we shall only consider
two examples. The results, however, suggest
& general theorem which remains to be esta-—
blished.

6.1. Example !. Consider the identific-
ation type non linear filtering problem given
by the equations

(6.2)
dx, = bdw,,db = 0,dy, = x.dt + dv,, x, € R

The estimation Lie algebra of this system is
easily calculated explicitly.

-

o
<

There 18 a "second order small" ideal 1,
in the Lie algebra L{EKF) generated by the
vectorfields of the extended Xalman filter
such that L(EXF)/1, is isomorphic to the
estimation Lie sxg@bra woduls its centre,
(And the dsomorphism is induced by the

natural map). Mere "second orvder small” means
roughly generated by expressions
&ij{?si,ﬁﬁ (373¥%; c{P, R, By (3/3%) +

(PR, 5) (3/3B) whwra the aj,0,d are funce-
&1an$ which are smﬁ}l to second order near
the "true state”,

6.3, Example 2. DMNow consider the ident~
ification type nenlinear filtering problem
also considered in section 5 above given by
the equations.

dxz = ax,dt + dwt , da = 0 ,
(6.4)
dyt = xedt + dvt v Xy € B
Again it is not difficult to write down the
(infinite dimensional) estimation Lie algebra
L of (b.4).

Again consider the Extended Xalman Fil-
ter of (6.4), Also in this case it turns out
that there 18 a seaonu order small ideal Iﬂ
such that L&‘Kf‘*zq 18 isomorphic to the
estimation Lie algebra of (6.4) modulo its
centre. There is also a first order small
ideal I; and a Lie algebra homemorphism
L + L(EKF)/I; which is in fact the family of
Kalman filters homomorphism mentioned in
section 4 above. This is a first order approx-
imation and L/centre (L) ~» L(EKF)/I7 is in
the nature of a second order approximation.
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